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Abstract

This article deals with a family of non-linear hyperelastic materials M�e� depending on a parameter e varying from 0

to 1; M�0� is a masonry-like material and M�1� is linear elastic. Some properties of the function bT�E; e� delivering the

Cauchy stress corresponding to the in®nitesimal strain E, are proved; in particular, it is shown that bT�E; e� is strongly

monotone for e > 0 and monotone for e � 0: Moreover, denoting by �u��; e�; E��; e�; T��; e�� the solution to the equi-

librium problem for solids made of a material M�e�; the convergence of �u��; e�; E��; e�; T��; e�� for e going to 0 and 1, is

investigated. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This article deals with a family of non-linear elastic materials M�e� dependent on parameter e varying
from 0 to 1 such that M�1� is linear elastic and M�0� corresponds to the masonry-like material described in
Del Piero (1989) and Lucchesi et al. (1994) . Speci®cally, for a ®xed e, I introduce a partition of the strain
space in order to de®ne the function bT�E; e� which gives the Cauchy stress corresponding to the in®ni-
tesimal strain E. M�e� materials are a generalization of the conewise linear elastic materials introduced in
Curnier et al. (1995). In fact, while in Curnier et al. (1995), the strain space is divided into convex poly-
hedral cones and the stress is assumed to be linear in each cone, here instead the partition elements are not
necessarily convex, and the stress bT�E; e� is a non-linear function of E. As in Curnier et al. (1995), it is
proved that continuity of the stress±strain law is the key property for globalizing a piecewise property. In
particular, I prove that bT�E; e� is monotone with respect to E in each of the domains Ri�e�, i � 1; 2; 3; into
which the strain space is divided. This result, together with the continuity of bT�E; e� at the interfaces of
domains Ri�e� guarantees that bT�E; e� is globally monotone.

The materials introduced in this article are a generalization of the bimodular materials described in
Green and Mkrtichian (1977) and Jones (1977), which exhibit di�erent behavior when stressed through
compression rather than tension. If Poisson's ratio equals zero, the two materials coincide.
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In Section 2, the materials M�e� are described, and the properties of bT�E; e� examined. In particular, the
strong monotonicity of bT�E; e� for e > 0 and the Lipschitz continuity of bT�E; e� for every e are proved.
Moreover, the derivative DE

bT�E; e� of bT�E; e� with respect to E is calculated in each domain Ri�e�, and
proved to be positive de®nite for e > 0 and positive semi-de®nite for e � 0; by explicitly calculating the
eigenvalues of DE

bT�E; e�. Finally, the dependence of bT�E; e� on e for a ®xed E is analyzed. The behavior of
M�e� approximates that of M(1) and M�0� for e tending towards 1 and 0, respectively.

Subsequently, I consider the equilibrium problem of a solid made of a M�e� material and I study the
behavior of the solution �u��; e�;E��; e�;T��; e�� for e approaching to 1 and 0. A similar problem has been
discussed by Wang (1995) who studied the behavior of a linear elastic material with Lam�e moduli l and k
when l goes to 0 and have provided relationships between the equilibrium states of the material de®ned by
the constitutive relation T � 2lE� k�trE�I, on the one hand, T � k�trE�I, on the other.

In Section 3 of this work, it is shown that the strong monotonicitiy of bT�E; e� for e > 0 allows proving
that the solution to the equilibrium problem of solids made of a material having constitutive equation
T � bT�E; e� is unique in terms of displacement, strain and stress, if the solution satis®es appropriate reg-
ularity conditions. For a masonry-like material, on the contrary, uniqueness is guaranteed only in terms of
stress. Moreover, the solution �u��; e�;E��; e�;T��; e�� to the equilibrium problem for a M(e) material con-
verges to the solution �u��; 1�;E��; 1�;T��; 1�� of the same equilibrium problem for a linear elastic material,
for e going to 1. In particular, T��; e� and E��; e� converge in the L2 norm to T��; 1� and E��; 1�, respectively,
and u��; e� converges to u��; 1� with respect to the H 1 norm. This result is guaranteed by the strong mono-
tonicity of bT�E; e� for e > 0; and by the fact that bT�E; e� is continuous with respect to e for each ®xed E.

Subsequently, it is shown that, if �u��; e�;E��; e�;T��; e�� is the solution to the equilibrium problem of a
solid made of material M�e�, and �u��; 0�;E��; 0�;T��; 0�� is a solution to the same equilibrium problem for
masonry-like solids, then T��; e� converges to T��; 0� in L2 for e tending towards 0. This outcome may
provide a way to overcome the di�culties encountered during solution of the equilibrium problem for
masonry solids via the ®nite element method. In fact, in order to improve the convergence of the numerical
method, it may be convenient to solve an approximate boundary-value problem obtained by substituting a
masonry-like material with a M�e� material for e near to 0.

The results obtained in Section 3 also hold if we forego the assumption of plane strain made here and
consider another partition of the strain space and consequently another stress function. In fact, the out-
come stems from the strong monotonicity of bT�E; e� for e > 0:

2. The constitutive equations

In this article, I limit myself to consideration of a plane strain, in other words I consider all strain tensors
for which q3 is the eigenvector corresponding to the zero eigenvalue, where q3 is a ®xed vector. In order to
set forth the constitutive equation, let us consider the two-dimensional linear space V orthogonal to q3: Let
Lin denote the space of all linear applications (second-order tensors) of V into V having the inner product
A � B � tr�ATB�; A, B 2 Lin, with AT, the transpose of A and tr, the trace functional. Let us indicate as
Sym the subspace of Lin constituted by symmetric tensors.

For the in®nitesimal strain E 2 Sym, let e1 and e2, with e16 e2, be its eigenvalues corresponding to the
eigenvectors q1 and q2. We now consider the symmetric tensors

O1 � q1 
 q1; O2 � q2 
 q2; O3 � 1���
2
p �q1 
 q2 � q2 
 q1�; �1�

where 
 denotes the tensor product de®ned by �a
 b�v � �b � v�a; 8a; b; v 2V. In view of the spectral
theorem, we have
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E � e1O1 � e2O2: �2�
Let l and k be the Lame' moduli of the linear elastic material M�1�, with k > 0: The case k � 0 will be dealt
with separately in Appendix A. For e 2 �0; 1�, and a � k=l, let us de®ne the hypersurfaces of Sym, I1�e�
and I2�e�,

I1�e� � fE 2 Sym j g1�E; e� � 0g; �3�

I2�e� � fE 2 Sym j g2�E; e� � 0g; �4�
where

g1�E; e� � ��1ÿ e�a� e�e1 � �1ÿ e��2� a�e2; �5�

g2�E; e� � e1 �6�
are isotropic functions. Let us de®ne the open cones of Sym

R1�e� � E 2 Sym j g1�E; e�f < 0g; �7�
R2�e� � E 2 Sym j g2�E; e�f > 0g; �8�
R3�e� � E 2 Sym j g1�E; e�f > 0; g2�E; e� < 0g: �9�

Sets Ri�e� are invariant under Orth, the group of all orthogonal tensors. R2�e� is convex for every e 2 �0; 1�
and R1�e� is convex only for e 2 �0; 2

3
�; in fact for these values of e; R1�e� � P�e�ÿ1�Symÿ�; where

P�e� � �2ÿ 3e�I� ��1ÿ e�a� e�I
 I; and Symÿ is the convex cone of symmetric negative de®nite tensors.
I is the fourth-order identity tensor over Sym and A
 B, with A and B belonging to Sym, is the fourth-order
tensor de®ned by A
 B�H� � �B �H�A;H 2 Sym. R3�e� is not convex, in fact, for a < 2 and e � 1

2
; tensors

E1 � 3
2
O1 ÿ 2O2 and E2 � 3

2
O2 ÿ 2O1 belong to R3�e�; but E1 � E2 � ÿ1

2
I 62 R3�e�:

Denoting by Ri�e� the closure of Ri�e� in Sym, we have R1�e� \ R3�e� � I1�e� and R2�e� \ R3�e� � I2�e�.
Fig. 1 shows the regions R1�e�;R2�e� and R3�e� represented in the half-plane E � fe16 e2g of the principal
strain plane e1 ÿ e2. For e � 0, we have

R1�0� � E 2 Sym j ae1f � �2� a�e26 0g; �10�
R2�0� � E 2 Sym j e1f P 0g; �11�
R3�0� � E 2 Sym j ae1f � �2� a�e2 P 0; e16 0g �12�

and the three regions, shown in Fig. 2, coincide with those introduced in Lucchesi et al. (1994) for masonry-
like materials. For e � 1, the regions become

R1�1� � E 2 Sym j e1f 6 0g; �13�
R2�1� � E 2 Sym j e1f P 0g; �14�
R3�1� � E 2 Sym j e1f � 0g: �15�

and are shown in Fig. 3.
For e 2 �0; 1�, let us consider the following function bT�E; e� dependent on E 2 Sym, with values in Sym,

delivering the Cauchy stress T � bT�E; e� corresponding to the in®nitesimal strain E,bT�E; e� � 2lE� k tr�E�I; E 2 R1�e�; �16�

bT�E; e� � c�e�E� k2�e� tr�E�I; E 2 R2�e�; �17�

bT�E; e� � a�e�e1O1 � b�e�e2O2 � k3�e� tr�E�I; E 2 R3�e�; �18�
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Fig. 1. Regions R1�e�, R2�e� and R3�e� for e 2 �0; 1�:

Fig. 2. Regions R1�0�, R2�0� and R3�0�:
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where I is the second-order identity tensor, and functions a�e�, b�e�, c�e�, k2�e� and k3�e� are to be deter-
mined by imposing the continuity of bT�E; e� at the interfaces I1�e� and I2�e�. Thus, from Eqs. (16)±(18), by
accounting for Eqs. (7)±(9) one obtains the following conditions which must be satis®ed for every e 2 �0; 1�,

�1ÿ e��2� a�a�e� � �2ÿ 3e�k3�e� � �1ÿ e��2� a�2l� �2ÿ 3e�k; �19�

��1ÿ e�a� e�b�e� ÿ �2ÿ 3e�k3�e� � ��1ÿ e�a� e�2lÿ �2ÿ 3e�k; �20�

k2�e� � k3�e�; �21�

c�e� � b�e�: �22�
Moreover, as for e � 0, bT�E; 0� is required to be the stress for masonries (Lucchesi et al., 1994),

bT�E; 0� � 2lE� k tr�E�I; E 2 R1�0�; �23�

bT�E; 0� � 0; E 2 R2�0�; �24�

bT�E; 0� � ue1O1; E 2 R3�0�; �25�
where u � 4l�1� a�=�2� a�, functions a�e�, b�e�, c�e�, k2�e� and k3�e� have to satisfy the additional con-
ditions

Fig. 3. Regions R1�1�, R2�1� and R3�1�:
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a�0� � u; �26�
b�0� � 0; �27�
k3�0� � 0; �28�
c�0� � 0; �29�
k2�0� � 0: �30�

Finally, in conformity with the fact that bT�E; 1� is the stress for a linear elastic material with Lam�e moduli
l and k, we have:

a�1� � 2l; �31�
b�1� � 2l; �32�
k3�1� � k; �33�
c�1� � 2l; �34�
k2�1� � k: �35�

In order to obtain a�e� and b�e� from Eqs. (19) and (20), we need to make some assumptions regarding
k3�e�. Speci®cally, we assume that k3�e� is a non-negative quadratic function of e. Thus, in keeping with Eqs.
(28) and (33), we have

k3�e� � ke�2ÿ e�: �36�
If we assume the linear relationship k3�e� � ke; a function a�e� satisfying both Eqs. (19) and (31) does not
exist. Of all possible quadratic relationships, Eq. (36) is the only choice. In fact, if we take
k3�e� � ke�e1e� 1ÿ e1�; with e1 2 R; and insert k3�e� into Eq. (19), then solve with respect to a�e�; it is easy to
verify that a�e� satis®es Eq. (31) if and only if e1 � ÿ1; which gives Eq. (36). Therefore, a�e� and b�e� take
the expressions:

a�e� � 2l� k
2� a

�1ÿ e��2ÿ 3e�; �37�

b�e� � 2lÿ k
�1ÿ e�2�2ÿ 3e�
�1ÿ e�a� e

: �38�

From Eqs. (22) and (21) we get

c�e� � 2lÿ k
�1ÿ e�2�2ÿ 3e�
�1ÿ e�a� e

; �39�

k2�e� � ke�2ÿ e�: �40�
It is easy to prove that for each e 2 �0; 1�;

a�e�P 0; b�e�P 0; k3�e�P 0; �41�
b�e�6 a�e� for e 2 �0; 2

3
�; a�e�6 b�e� for e 2 �2

3
; 1�: �42�

A material having constitutive Eqs. (16)±(18) will be denoted by M�e�.
The normal stress t3, corresponding to the vector q3, is equal to �k=2�l� k���t1 � t2�; where t1 and t2 are

the eigenvalues of T corresponding to the eigenvectors q1 and q2. In fact, relation t3 � �k=2�l� k���t1 � t2�
holds in R1�e�, where the material exhibits linear elastic behavior, and is extended by continuity to the other
two regions.
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For every e 2 �0; 1�; bT�E; e�, given in Eqs. (16)±(18), is an isotropic, positively homogeneous of degree
one, non-linear function. The strain energy density corresponding to bT�E; e� is

bw�E; e� � ljjEjj2 � 1
2
k�tr�E��2; E 2 R1�e�; �43�

bw�E; e� � 1
2

b�e�jjEjj2
n

� k3�e��tr�E��2
o
; E 2 R2�e�; �44�

bw�E; e� � 1
2

a�e�e2
1

n
� b�e�e2

2 � k3�e��tr�E��2
o
; E 2 R3�e� �45�

with kEk � �E � E�1=2
; thus, materials M�e� are hyperelastic.

For each e 2 �0; 1�; let us consider the fourth-order tensor

C�e� � b�e�I� k3�e�I
 I: �46�
The eigenvalues of C�e� are b�e� and b�e� � 2k3�e�; both of which are positive. Therefore C�e� is positive
de®nite and invertible, with inverse

C�e�ÿ1 � 1

b�e� Iÿ
k3�e�

b�e��b�e� � 2k3�e�� I
 I: �47�

Some properties of the function bT are collected in the following proposition:

Proposition 1. �i� For e > 0; bT�E; e� is strongly monotone, i.e. there exists a positive scalar j�e� such that

�bT�E1; e� ÿ bT�E2; e�� � �E1 ÿ E2�P j�e�jjE1 ÿ E2jj2 8 E1;E2 2 Sym: �48�
�ii� For e 2 �0; 1�; bT�E; e� is monotone, in particular, it holds that

�bT�E1; e� ÿ bT�E2; e�� � �E1 ÿ E2�P 1

2�l� k� jj
bT�E1; e� ÿ bT�E2; e�jj2 8 E1;E2 2 Sym: �49�

�iii� For e 2 �0; 1�; bT�E; e� is Lipschitz continuous

jjbT�E1; e� ÿ bT�E2; e�jj6 2�l� k�jjE1 ÿ E2jj 8 E1;E2 2 Sym: �50�

Proof. (i) Let us start by proving that bT�E; e� is strongly monotone in the three regions separately. If
E1;E2 2 R1�e�, then, from Eq. (16) it follows that

�bT�E1; e� ÿ bT�E2; e�� � �E1 ÿ E2�P 2ljjE1 ÿ E2jj2; �51�
and if E1;E2 2 R2�e�, from Eq. (17) we get

�bT�E1; e� ÿ bT�E2; e�� � �E1 ÿ E2�P b�e�jjE1 ÿ E2jj2: �52�
Now, we have to prove that bT�E; e� is strongly monotone in the non-convex cone R3�e�. Let us set

j�e� � b�e� for e 2 �0; 2
3
�;

g2�e� for e 2 �2
3
; 1�

�
�53�

with

g2�e� � 1
2

a�e�
�

� b�e� � 2k3�e� ÿ
������������������������������������������������
�a�e� ÿ b�e��2 � 4k3�e�2

q �
; �54�
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because of Eqs. (41) and (42), g2�e� is positive for e > 0 and zero for e � 0; moreover we have

a�e�6 g2�e�6 b�e� for e 2 �2
3
; 1�: �55�

Given E1, E2 2 R3�e�; let E1 � e1O1 � e2O2 and E2 � u1P1 � u2P2 be their spectral representations, where
Oi � qi 
 qi, Pi � pi 
 pi, i � 1; 2 and qi and pi are the eigenvectors of E1 and E2, respectively. Simple
calculations show that strong monotonicity (48) is equivalent to the inequality

�a�e� ÿ j�e��jje1O1 ÿ u1P1jj2 � �b�e� ÿ j�e��jje2O2 ÿ u2P2jj2 ÿ �a�e� � b�e� ÿ 2j�e��
� �e1O1 � u2P2 � e2O2 � u1P1� � k3�e��tr�E1� ÿ tr�E2��2 P 0: �56�

As in R3�e� we have e1; u16 0 and e2; u2 P 0; in view of Eqs. (53) and (55), Eq. (56) is satis®ed if

�a�e� ÿ j�e��jje1O1 ÿ u1P1jj2 � �b�e� ÿ j�e��jje2O2 ÿ u2P2jj2 � k3�e��tr�E1� ÿ tr�E2��2 P 0: �57�
If e 2 �0; 2

3
�; the left-hand side of Eq. (57) is the sum of non-negative quantities; if e 2 �2

3
; 1�; the proof of

inequality (57) requires some calculations. Let Q 2 Orth be the orthogonal tensor such that pi � Qqi. Then,
for cos2 d � �q1 �Qq1�2 � �q2 �Qq2�2; and sin2 d � �q1 �Qq2�2 � �q2 �Qq1�2; elementary calculations show
that Eq. (57) is equivalent to the inequality

f�a�e� ÿ g2�e���e1 ÿ u1�2 � �b�e� ÿ g2�e���e2 ÿ u2�2 � k3�e���e1 ÿ u1�2 � �e2 ÿ u2�2
� 2�e1 ÿ u1��e2 ÿ u2��g cos2 d� f�a�e� ÿ g2�e���e2

1 � u2
1� � �b�e� ÿ g2�e���e2

2 � u2
2�

� k3�e���e1 ÿ u1�2 � �e2 ÿ u2�2 � 2�e1 ÿ u1��e2 ÿ u2��g sin2 d: �58�
As far as the coe�cient of cos2 d is concerned, if e1 ÿ u1 � 0; then it is non-negative. Otherwise, for
e1 ÿ u1 6� 0; it has the same sign of the parabola

p0�z� � �b�e� � k3�e� ÿ g2�e��z2 � 2k3�e�z� a�e� � k3�e� ÿ g2�e�; �59�
where z � �e2 ÿ u2�=�e1 ÿ u1�: As the vertex of p0 has coordinates �ÿ�k3�e��=�b�e� � k3�e� ÿ g2�e��; 0� and
the quantity b�e� � k3�e� ÿ g2�e� is greater than 0; then p0�z�P 0 for each z 2 R: The coe�cient of sin2 d is
the sum of the coe�cient of cos2 d plus the quantity

2�a�e� ÿ g2�e��e1u1 � 2�b�e� ÿ g2�e��e2u2; �60�
which is non-negative. In fact, in R3�e�; we have e1 � he2 and u1 � ku2; with h; k 2 �ÿ��2� a��1ÿ e��=
��1ÿ e�a� e�; 0�; and the expression in Eq. (60) has the same sign of the functionep�h; k� � �a�e� ÿ g2�e��hk � b�e� ÿ g2�e�; �61�
that in the square �ÿ��2� a��1ÿ e��=��1ÿ e�a� e�; 0� � �ÿ��2� a��1ÿ e��=��1ÿ e�a� e�; 0� is non-nega-
tive, as can be checked through simple calculations.

As for every e 2 �0; 1�; the inequalities 2lP j�e� and b�e�P j�e� hold, we deduce that Eq. (48) is sat-
is®ed in each region Ri�e�:

Now, let us suppose that E1 belongs to R1�e�, �g1�E1; e� 6� 0� and E2 belongs to R3�e�, in particular,
g1�E1; e� < 0 and g1�E2; e� > 0. Let us consider the continuous function eg1�t� � g1��1ÿ t�E1 � tE2; e�;
t 2 �0; 1�: We have eg1�0� < 0 and eg1�1� > 0, and therefore there exists t 2 �0; 1�; such that eg1�t� � 0: Let us
put K � �1ÿ t�E1 � t E2. K belongs to I1�e� � R1�e� \R3�e�, and therefore as Eq. (48) holds in every
region, we have:

�bT�E1; e� ÿ bT�K; e�� � �E1 ÿ K�P j�e�jjE1 ÿ Kjj2; �62�

�bT�K; e� ÿ bT�E2; e�� � �Kÿ E2�P j�e�jjKÿ E2jj2: �63�
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By accounting for E1 ÿ K � t�E1 ÿ E2� and Kÿ E2 � �1ÿ t��E1 ÿ E2�; Eqs. (62) and (63) can be rewritten
as follows:bT�E1; e� � �E1 ÿ E2�P bT�K; e� � �E1 ÿ E2� � j�e�tjjE1 ÿ E2jj2; �64�

bT�K; e� � �E1 ÿ E2�P bT�E2; e� � �E1 ÿ E2� � j�e��1ÿ t�jjE1 ÿ E2jj2: �65�
Substituting the latter in the former yields Eq. (48).

We proceed in an analogous way if E1 belongs to R1�e� and E2 lies in R3�e�, with g1�E2; e� 6� 0; if E1

belongs to R3�e�, with g2�E1; e� 6� 0, and E2 lies in R2�e�; if E1 belongs to R3�e� and E2 lies in R2�e�, with
g2�E2; e� 6� 0:

We must still consider the ®nal case, in which E1 belongs to R1�e� with g1�E1; e� 6� 0 and E2 lies in R2�e�.
As g1�E1; e� < 0 and g1�E2; e� > 0; there exists bt 2 �0; 1� such that the tensor J � �1ÿbt�E1 �bt E2 belongs to
the interface I1�e�. Inequality (48) now follows from the fact that monotonicity holds separately for E1,
J 2 R3, for J 2 R3, E2 2 R2�e� and from the equalities E1 ÿ J � bt�E1 ÿ E2� and Jÿ E2 � �1ÿbt��E1 ÿ E2�:
This allows us to conclude the proof of the strong monotonicity of bT in Sym and therefore of the strict
convexity of the strain energy density bw de®ned in Eqs. (43)±(45).

(ii) Eq. (49) has been already proved in Del Piero (1989) for e � 0. We must now consider the case e > 0:
From Eq. ( 48), it follows that bT�E; e� is injective and its inverse bTÿ1��; e� exists. For t1 and t2, the eigen-
values of T with t16 t2, we havebTÿ1�T; e� � C�1�ÿ1�T� for T 2S1�e�; �66�

bTÿ1�T; e� � C�e�ÿ1�T� for T 2 S2�e�; �67�

bTÿ1�T; e� � A�e�t1O1 � B�e�t2O2 � C�e� tr�T�I; T 2S3�e�; �68�
where

A�e� � b�e� � 2k3�e�
a�e�b�e� � k3�e��a�e� � b�e�� ; �69�

B�e� � a�e� � 2k3�e�
a�e�b�e� � k3�e��a�e� � b�e�� ; �70�

C�e� � ÿ k3�e�
a�e�b�e� � k3�e��a�e� � b�e�� ; �71�

S1�e� � T 2 Sym j h1�T; e�f < 0g; �72�

S2�e� � T 2 Sym j h2�T; e�f > 0g; �73�

S3�e� � T 2 Sym j h1�T; e�f > 0; h2�T; e� < 0g �74�
with

h1�T; e� � �2� a�et1 � �4�1ÿ e� � a�4ÿ 5e��t2; �75�

h2�T; e� � �b�e� � k3�e��t1 ÿ k3�e�t2: �76�
Regions S1�e�; S2�e� and S3�e� are shown in Figs. 4±6 for e 2 �0; �4�1� a��=�4� 5a��; e � �4�1� a��=
�4� 5a� and e 2 �4�1� a�=�4� 5a�; 1�; respectively.
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Fig. 4. Regions S1�e�, S2�e� and S3�e� for e 2 �0; 4�1� a�=�4� 5a��:

Fig. 5. Regions S1�e�, S2�e� and S3�e� for e � 4�1� a�=�4� 5a�.
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As in the proof of (i), we start by demonstrating that bTÿ1�T; e� is strongly monotone separately in the
three regions. If T1;T2 2 S1�e�, then

�bTÿ1�T1; e� ÿ bTÿ1�T2; e�� � �T1 ÿ T2�P 1

2�l� k� jjT1 ÿ T2jj2 �77�

if T1;T2 2 S2�e�, we have

�bTÿ1�T1; e� ÿ bTÿ1�T2; e�� � �T1 ÿ T2�P 1

b�e� � 2k3�e� jjT1 ÿ T2jj2 P
1

2�l� k� jjT1 ÿ T2jj2; �78�

where the last inequality comes from Eqs. (36) and (38). Now, let us prove that for T1;T2 2S3�e�, we have

�bTÿ1�T1; e� ÿ bTÿ1�T2; e�� � �T1 ÿ T2�P 1

2�l� k� jjT1 ÿ T2jj2: �79�

Let T1 � t1O1 � t2O2 and T2 � s1P1 � s2P2 be the spectral representations of T1 and T2, where Oi �
qi 
 qi, Pi � pi 
 pi, i � 1, 2 and qi and pi are the eigenvectors of T1 and T2, respectively. Let Q 2 Orth be
the orthogonal tensor such that pi � Qqi. Then, for cos2 d � �q1 �Qq1�2 � �q2 �Qq2�2; and sin2 d �
�q1 �Qq2�2 � �q2 �Qq1�2; elementary calculations show that Eq. (79) is equivalent to the inequality

Fig. 6. Regions S1�e�; S2�e� and S3�e� for e 2 ��4�1� a��=�4� 5a�; 1�:
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A�e�
��

� C�e� ÿ 1

2�l� k�
�
�t1 ÿ s1�2 � B�e�

�
� C�e� ÿ 1

2�l� k�
�
�t2 ÿ s2�2 � 2C�e��t1 ÿ s1�

� �t2 ÿ s2�
�

cos2 d� A�e�
��

� C�e� ÿ 1

2�l� k�
�
�t2

1 � s2
1� � B�e�

�
� C�e� ÿ 1

2�l� k�
�

t2
2

ÿ � s2
2

�
ÿ A�e�
�

� B�e� � 2C�e� ÿ 1

�l� k�
�
�t1s2 � t2s1� � 2C�e��t1 ÿ s2��t2 ÿ s1�

�
sin2 d P 0: �80�

The coe�cient of cos2 d is non-negative; this is guaranteed by the fact that for t2 ÿ s2 � 0; we have

A�e� � C�e� ÿ 1

2�l� k� P 0 8e 2 �0; 1� �81�

and for t2 ÿ s2 6� 0; the parabola

p1�z� � A�e�
�

� C�e� ÿ 1

2�l� k�
�

z2 � 2C�e�z� B�e� � C�e� ÿ 1

2�l� k� �82�

with z � �t1 ÿ s1�=�t2 ÿ s2�; is positive for each z. By setting t1 � m�e�t2; s1 � n�e�s2; with m�e�; n�e� 2
��4�1ÿ e� � a�4ÿ 5e��=�2� a�e; k3�e�=�b�e� � k3�e���, e > 0; the coe�cient of sin2 d can be rewritten as

A�e�
��

� C�e� ÿ 1

2�l� k�
�

m2�e� � 2C�e�m�e� � B�e� � C�e� ÿ 1

2�l� k�
�

t2
2

� A�e�
��

� C�e� ÿ 1

2�l� k�
�

n2�e� � 2C�e�n�e� � B�e� � C�e� ÿ 1

2�l� k�
�

s2
2

ÿ A�e�
��

� B�e� � 2C�e� ÿ 1

l� k

�
�m�e� � n�e�� � 2C�e��1� m�e�n�e��

�
t2s2: �83�

For w � s2=t2; with t2 > 0; the non-negativeness of Eq. ( 83) is equivalent to the non-negativeness of the
parabola

p2�w� � A�e�
��

� C�e� ÿ 1

2�l� k�
�

n2�e� � 2C�e�n�e� � B�e� � C�e� ÿ 1

2�l� k�
�

w2

ÿ A�e�
��

� B�e� � 2C�e� ÿ 1

l� k

�
�m�e� � n�e�� � 2C�e��1� m�e�n�e��

�
w

� A�e�
�

� C�e� ÿ 1

2�l� k�
�

m2�e� � 2C�e�m�e� � B�e� � C�e� ÿ 1

2�l� k� : �84�

Through calculations omitted here for the sake of brevity, it can be proved that for each e 2 �0; 1�; p2�w� is
positive for w > 0, and the proof of Eq. (79) is thus concluded. Finally, from Eqs. (77)±(79) with arguments
similar to those used in proving (i), we get Eq. (49).

(iii) Relation (50) follows directly from Eq. (49) by using the Schwarz inequality. �

From the proof of Proposition 1, a more general result already proved in Curnier et al. (1995) follows,
that a continuous piecewise (strongly) monotone function is (strongly) monotone globally, as well.

The next proposition deals with the di�erentiability of bT with respect to E.

Proposition 2. For e 2 �0; 1�, bT�E; e� is di�erentiable in each region Ri�e�,

DE
bT�E; e� � C�1� for E 2 R1�e�; �85�
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DE
bT�E; e� � C�e� for E 2 R2�e�; �86�

DE
bT�E; e� � �a�e� � k3�e��O1 
O1 � �b�e� � k3�e��O2 
O2 � k3�e��O1 
O2 �O2 
O1�;

b�e�e2 ÿ a�e�e1

e2 ÿ e1

O3 
O3 for E 2 R3�e�: �87�

Moreover; DE
bT�E; e� is positive de®nite for e > 0 and positive semi-de®nite for e � 0:

Proof. The derivative DE
bT�E; e� of bT�E; e� with respect to E can be explicitly calculated from Eqs. (16)±(18)

by using the results provided in Lucchesi et al. (1996). Here, we prove that DE
bT�E; 0� is positive semi-

de®nite in each of the three regions Ri�e�, while DE
bT�E; e�, on the contrary is positive de®nite in Ri�e� for

e > 0. In fact, if E 2 R1�e�, then for every H in Sym we have

DE
bT�E; e��H� �H P 2ljjHjj2; �88�

and if E 2 R2�e�, for every H in Sym we have

DE
bT�E; e��H� �H P b�e�jjHjj2: �89�

Now we have to consider the case of E 2 R3�e�. From Eq. (87), it follows that

g1�E; e� � b�e�e2 ÿ a�e�e1

e2 ÿ e1

�90�

is the eigenvalue corresponding to O3. In R3�e�, we have ÿ�1ÿ e��2� a�=��1ÿ e�a� e� e2 < e1 < 0 and can
thus write e1 � k e2; with k 2 �ÿ�1ÿ e��2� a�=��1ÿ e�a� e�; 0�: Then, Eq. (90) becomes

g1 �
b�e� ÿ a�e�k

1ÿ k
: �91�

Now, let us consider the function g1�k; e� when k lies in �ÿ�1ÿ e��2� a�=��1ÿ e�a� e�; 0�: g1�0; e� � b�e�
and g1�ÿ�1ÿ e��2� a�=��1ÿ e�a� e�; e� � 2l. Further, the derivative of g1�k; e� with respect to k is
negative if e 2 �0; 2

3
�; zero for e � 2

3
; and positive if e 2 �2

3
; 1�: Therefore, putting k � ÿ�1ÿ e��2� a�=

��1ÿ e�a� e�; we have

bg1�e� � inf
k2��k;0�

g 1�k; e� � b�e� if e 2 �0; 2
3
�;

2l if e 2 �2
3
; 1�;

�
�92�

and we see that Eq. (90) is positive for e P 0: The other two eigenvalues corresponding to the eigenvectors
belonging to SpanfO1;O2g, are the roots of the second-order equation

g2 ÿ �a�e� � b�e� � 2k3�e��g� a�e�b�e� � k3�e��a�e� � b�e�� � 0; �93�
one root is g2�e� given in Eq. (54) and the other one is

g3�e� � 1
2

a�e�
�

� b�e� � k3�e� �
������������������������������������������������
�a�e� ÿ b�e��2 � 4k3�e�2

q �
: �94�

Because of Eqs. (41) and (42), it holds that g2�e� < g3�e� and g3�e� is positive for each e 2 �0; 1�. Due to the
fact that b�e�6 g2�e�, if e 2 �0; 2

3
�; and 2l P g2�e� for e 2 �2

3
; 1�; recalling the de®nition of j�e� given in Eq.

(53), we conclude that for E 2 R3�e�, we have

DE
bT�E; e��H� �H P j�e�jjHjj2 for every H 2 Sym: �95�
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By accounting for Eqs. (53), (88) and (89), we show that condition (95) is satis®ed for every E belonging to
Ri�e�. Function j�e� is positive for e > 0 and null for e � 0, in keeping with the fact that DE

bT�E; e� is
positive semi-de®nite for masonry-like materials (Lucchesi et al., 1996). �

As in the case of masonry-like materials, for e < 1; the derivative DE
bT�E; e� is not continuous with

respect to E across the interfaces I1�e� and I2�e�. Nevertheless, the jump of DE
bT�E; e� at I1�e� and I2�e�

satis®es the conditions given in Curnier et al. (1995), which express the absence of tangential discontinuities
of the derivative of stress with respect to strain. In fact, from Eqs. (85) and (87) it can be easily shown that

�DE
bT�E; e�� � ÿ k�2� a��1ÿ e�

e� �1ÿ e�a rg1�E; e� 
 rg1�E; e� 8 E 2 I1�e� �96�

with

rg1�E; e� � �e� �1ÿ e�a�O1 � �2� a��1ÿ e�O2: �97�
Moreover, in view of Eqs. (87) and (86), we have

�DE
bT�E; e�� � �b�e� ÿ a�e��rg2�E; e� 
 rg2�E; e� 8 E 2 I2�e� �98�

with

rg2�E; e� � O1: �99�
In particular, for E 2 I1�e� or E 2 I2�e�; it holds that

�DE
bT�E; e���E� � 0; �100�

moreover, it is easy to prove that

DE
bT�E; e��E� � bT�E; e� 8 E 2 Ri�e�; i � 1; 2; 3: �101�

The behavior of bT�E; e� as function of e is the subject of the following statement:

Proposition 3. �i� There exists a function f1�l; k; e� with

lim
e!1

f1�l; k; e� � k
2� a

> 0 �102�

such that for each e 2 �2
3
; 1� it holds that

jjbT�E; e� ÿ bT�E; 1�jj6 �1ÿ e�f1�l; k; e�jjEjj 8 E 2 Sym: �103�
�ii� There exists a function f0�l; k; e� with

lim
e!0

f0�l; k; e� > 0 �104�

such that for each e 2 �0; 2
3
� the inequality

jjbT�E; e� ÿ bT�E; 0�jj6 ef0�l; k; e�jjEjj 8 E 2 Sym �105�
holds.

Proof. (i) If E 2 R1�e�, then

jjbT�E; e� ÿ bT�E; 1�jj � 0: �106�
For E 2 R2�e�, we have
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jjbT�E; e� ÿ bT�E; 1�jj � �1ÿ e�2jjD�e��E�jj; �107�
where

D�e� � k�3eÿ 2�
�1ÿ e�a� e

Iÿ kI
 I: �108�

For values of e belonging to �2
3
; 1�; we have jjD�e�jj � k�3eÿ 2�=��1ÿ e�a� e� and from Eq. (107), it fol-

lows that

jjbT�E; e� ÿ bT�E; 1�jj6 �1ÿ e�2 k�3eÿ 2�
�1ÿ e�a� e

jjEjj: �109�

Finally, let us consider the case of E 2 R3�e�: It holds that for e belonging to �2
3
; 1�;

kbT�E; e� ÿ bT�E; 1�k2 � �1ÿ e�2 a�e� ÿ 2l
1ÿ e

�"(
ÿ k�1ÿ e�

�2

� k2�1ÿ e�2
#

e2
1

� b�e� ÿ 2l
1ÿ e

�"
ÿ k�1ÿ e�

�2

� k2�1ÿ e�2
#

e2
2

ÿ 2k�1ÿ e� a�e� ÿ 2l
1ÿ e

�
� b�e� ÿ 2l

1ÿ e
ÿ 2k�1ÿ e�

�
e1e2

)
�110�

from which it follows that

jjbT�E; e� ÿ bT�E; 1�jj26 �1ÿ e�2 a�e� ÿ 2l
1ÿ e

�(
ÿ k�1ÿ e�

�2

� k2�1ÿ e�2
)
jjEjj2: �111�

By comparing Eq. (111) with Eq. (109), we get Eq. (103) with

f1�l; k; e� �
������������������������������������������������������������������������������

a�e� ÿ 2l
1ÿ e

ÿ k�1ÿ e�
� �2

� k2�1ÿ e�2:
s

�112�

(ii) Considering E 2 R2�e�, from Eq. (17) we have

jjbT�E; e� ÿ bT�E; 0�jj � jjC�e��E�jj6 jjC�e�jj jjEjj � e

���������������������������������������������������������
b2�e�
e2
� 4

k3�e�
e2
�b�e� � k3�e��

r
jjEjj: �113�

For E 2 R3�e�, Eq. (18 ) implies that

jjbT�E; e� ÿ bT�E; 0�jj2 � e2 a�e� � k3�e� ÿ u
e

� �2
"(

� k2
3�e�
e2

#
e2

1 �
b�e� � k3�e�

e

� �2
"

� k2
3�e�
e2

#
e2

2

� 2
k3�e�

e
a�e� � b�e� � 2k3�e� ÿ u

e

� �
e1e2

�
: �114�

As a�e� � b�e� � 2k3�e� ÿ u > 0, e1 < 0 and e2 > 0; from Eq. (114), it follows that

jjbT�E; e� ÿ bT�E; 0�jj � eq�l; k; e�jjEjj; �115�
where

q�l; k; e� � max

�����������������������������������������������������������
a�e� � k3�e� ÿ u

e

� �2

� k2
3�e�
e2

s
;

��������������������������������������������������
b�e� � k3�e�

e

� �2

� k2
3�e�
e2

s8<:
9=;: �116�
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For E 2 R1�e� \R1�0�; we have

jjbT�E; e� ÿ bT�E; 0�jj � 0: �117�
Finally, let us consider the case of E 2 R1�e� \R3�0�: For E � e1O1 � e2O1; we have e2 � o�e�e1; where
o�e� 2 �ÿa=�2� a� ÿ e=��1ÿ e��2� a��;ÿa=�2� a�� and thus,

jjbT�E; e� ÿ bT�E; 0�jj � jj�2lÿ u� k�1� o�e��e1O1 � �2lo�e� � k�1� o�e��e2O2jj
6 ey�l; k�jjEjj �118�

with

y�l; k� � max
t2�0;1�

������������������������������������������������������������������������������������������
2l2�2� 2a� a2��1� 2�aÿ 1�t � �1ÿ 2a�t2�

p
: �119�

By accounting for Eqs. (113), (115), (117) and (118), condition (105) is satis®ed by

f0�l; k; e� � max

���������������������������������������������������������
b2�e�
e2
� 4

k3�e�
e2
�b�e� � k3�e��

r
; q�l; k; e�; y�l; k�

( )
: � �120�

3. The boundary-value problem

Let B be a body made of a M�e� material, for e 2 �0; 1�: More precisely, let B be a bounded open
connected subset of the two-dimensional euclidean space, with a Lipschitz-continuous boundary oB, and
let Su and Sf be two subsets of the boundary oB of B, such that their union covers oB, their interiors are
disjointed and the measure of Su is positive (Ciarlet, 1978).

We denote by L2�B; Sym� the space of all symmetric tensor-valued functions A square integrable over B,
with the norm

jjAjjL2�B;Sym� �
Z
B

jjA�x�jj2 dx

0@ 1A1=2

; �121�

where k k is the norm of Lin, and by H 1�B;V�, the space of all vector-valued functions v belonging to
L2�B;V� such that rv 2 L2�B; Sym�; with the norm

jjvjjH1�B;V� � jjvjj2L2�B;V�
�

� jjrvjj2L2�B;Sym�
�1=2

: �122�
Moreover, let us consider the sets

Y � fA 2 L2�B; Sym� j divA 2 L2�B;V�g; �123�

U � fv 2 H 1�B;V� j v � 0 on Sug: �124�
Let b 2 L2�B;V� and s0 2 L2�Sf ;V� be two given functions. A load �b; s0� is admissible if the corre-
sponding boundary-value problem has a solution, i.e., if there exists a triple �ue;Ee;Te� constituted by a
stress ®eld Te 2 Y, a strain ®eld Ee 2 L2�B; Sym� and a displacement ®eld ue 2 U; such that

Ee � 1
2
�rue �ruT

e �; �125�

Te � bT�Ee; e�; �126�

Ten � s0; on Sf ; �127�
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divTe � b � 0; �128�

where n is the outward unit normal to Sf . It is easy to prove that, if �u�1�e ;E�1�e ;T�1�e � and �u�2�e ;E�2�e ;T�2�e � are
two solutions to Eqs. (125)±(128) for e > 0, then the two coincide in B. The triple [ue;Ee;Te], with
ue � u�1�e ÿ u�2�e , Ee � E�1�e ÿ E�2�e , Te � T�1�e ÿ T�2�e , satis®es Eq. (125) and ue � 0 on Su. Moreover, it satis®es
Eqs. (127) and (128) with b � 0 and s0 � 0. Thus, a simple application of the principle of virtual work
proves thatZ

B

Te � Ee dx � 0: �129�

Now, by virtue of the strong monotonicity of bT�E; e�, from Eq. (129) we may deduce that Te � Ee � 0 in B
and therefore, once more using Eq. (48), can conclude that E�1�e � E�2�e and then T�1�e � T�2�e : Considering
that ru�1�e � ru�2�e and u�1�e � u�2�e on Su, we get u�1�e � u�2�e in B . On the contrary, if e � 0, Eq. (129) allows
us to conclude only that T

�1�
0 � T

�2�
0 (Lucchesi et al., 1996).

Now, let us consider the equilibrium problem (125)±(128) and, for e 2 �0,1), let �ue;Ee;Te� be its solution
de®ned on B with values in V� Sym� Sym. We denote by �u1;E1;T1� the solution to the equilibrium
problem corresponding to a linear elastic material M�1�, and by �u0;E0;T0� a solution to the equilibrium
problem for a masonry-like material M�0�. No assumptions are made on the uniqueness of displacement u0

or strain E0. We analyze the behavior of �ue;Ee;Te� for e tending towards 1 and 0.

Proposition 4. The following results hold:

lim
e!1

ue � u1 in H 1�B;V�; �130�

lim
e!1

Ee � E1; lim
e!1

Te � T1 in L2�B; Sym�; �131�

lim
e!0

Te � T0 in L2�B; Sym�: �132�

Proof. (i) In view of the principle of virtual work, it holds that for each e 2 �0; 1�;Z
B

�Te�x� ÿ T1�x�� � �Ee�x� ÿ E1�x��dx � 0: �133�

The following relations

�Te�x� ÿ T1�x�� � �Ee�x� ÿ E1�x�� � �bT�Ee�x�; e� ÿ bT�E1�x�; 1�� � �Ee�x� ÿ E1�x��
� �bT�Ee�x�; e� ÿ bT�E1�x�; e�� � �Ee�x� ÿ E1�x��
� �bT�E1�x�; e� ÿ bT�E1�x�; 1�� � �Ee�x� ÿ E1�x��

P j�e�jjEe�x� ÿ E1�x�jj2 ÿ jjbT�E1�x�; e�
ÿ bT�E1�x�; 1�jj jjEe�x� ÿ E1�x�jj �134�

also hold, for which we have used the strong monotonicity of bT�E; e� given in Eq. (48) and the Schwarz
inequality. By integrating Eq. (134) and accounting for Eq. (133), we show that for each e 2 �0; 1�;
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Z
B

jjEe�x� ÿ E1�x�jj2 dx6 1

j�e�
Z
B

jjbT�E1�x�; e� ÿ bT�E1�x�; 1�jj jj Ee�x� ÿ E1�x�jjdx

6 1ÿ e
j�e� f1�l; k; e�

Z
B

jjE1�x�jj jj Ee�x� ÿ E1�x�jjdx

6 1ÿ e
j�e� f1�l; k; e�

Z
B

jjE1�x�jj2 dx
� �1=2 Z

B

jjEe�x�
�

ÿ E1�x�jj2 dx
�1=2

; �135�

where the second inequality follows from Eq. (103) and the third from the Schwarz inequality. From Eq.
(135), keeping in mind that Eq. (102) and j�1� � 2l hold, we obtain

lim
e!1

Z
B

jjEe�x� ÿ E1�x�jj2 dx � 0; �136�

which expresses the convergence of Ee on E1 with respect to the L2 norm, when e tends towards to 1.
By virtue of the strict positiveness of the measure of Su, over the space U the norm jjvjjH1�B;V� is

equivalent to the norm jvj � jj1
2
�rv�rvT�jjL2�B;Sym� (Ciarlet, 1978) , thus the convergence

lim
e!1
jjEe ÿ E1jjL2�B;Sym� � 0 �137�

implies the convergence

lim
e!1
jjue ÿ u1jjH1�B;V� � 0: �138�

As far as the convergence of Te is concerned, let us consider the following inequalities:

jjTe�x� ÿ T1�x�jj6 jjbT�Ee�x�; e� ÿ bT�Ee�x�; 1�jj � jjbT�Ee�x�; 1� ÿ bT�E1�x�; 1�jj
6 �1ÿ e�f1�l; k; e�jjEe�x�jj � 2ljjEe�x� ÿ E1�x�jj: �139�

By taking the square of Eq. (139) and integrating over B, we getZ
B

jjTe�x� ÿ T1�x�jj2 dx6 �1ÿ e�2f1�l; k; e�2
Z
B

jjEe�x�jj2 dx� 4l2

Z
B

jjEe�x� ÿ E1�x�jj2 dx

� 4l�1ÿ e�f1�l; k; e�
Z
B

jjEe�x�jj2 dx
� �1=2 Z

B

jjEe�x�
�

ÿ E1�x�jj2 dx
�1=2

�140�

from which

lim
e!1

Z
B

jjTe�x� ÿ T1�x�jj2 dx � 0 �141�

follows.
(ii) The principle of virtual work implies that for every e 2 �0; 1�;Z

B

�Te�x� ÿ T0�x�� � �Ee�x� ÿ E0�x��dx � 0: �142�

By proceeding as in the previous part (i) and accounting for Eqs. (48) and (105), we get
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Z
B

jjEe�x� ÿ E0�x�jj2 dx6 1

j�e�
Z
B

jjbT�E0�x�; e� ÿ bT�E0�x�; 0�jj jjEe�x� ÿ E0�x�jjdx

6 e
j�e� f0�l; k; e�

Z
B

jjE0�x�jj jjEe�x� ÿ E0�x�jjdx

6 e
j�e� f0�l; k; e�

Z
B

jjE0�x�jj2 dx
� �1=2 Z

B

jjEe�x�
�

ÿ E0�x�jj2 dx
�1=2

�143�

for each e 2 �0; 1�; from which we obtainZ
B

jjEe�x� ÿ E0�x�jj2 dx6 c 8 e 2 �0; 1�; �144�

in view of Eqs. (37) and (53), c has the expression

c � max
e

�1ÿ e�a� e
l�2� a�1ÿ e��5ÿ 3e�� f0�l; k; e�

� �2 Z
B

jjE0�x�jj2 dx: �145�

Taking Eq. (49) into account, for each e 2 �0; 1�; we have

�Te�x� ÿ T0�x�� � �Ee�x� ÿ E0�x�� � �bT�Ee�x�; e� ÿ bT�E0�x�; 0�� � �Ee�x� ÿ E0�x��
� �bT�Ee�x�; e� ÿ bT�E0�x�; e�� � �Ee�x� ÿ E0�x��
� �bT�E0�x�; e� ÿ bT�E0�x�; 0�� � �Ee�x� ÿ E0�x��

P
1

2�l� k� jj
bT�Ee�x�; e� ÿ bT�E0�x�; e�jj2

ÿ jjbT�E0�x�; e� ÿ bT�E0�x�; 0�jj jjEe�x� ÿ E0�x�jj: �146�
By integrating Eq. (146) and recalling Eq. (105), we arrive atZ

B

jjbT�Ee�x�; e� ÿ bT�E0�x�; e�jj2 dx6 2�l� k�ef0�l; k; e�
Z
B

jjEe�x�
�

ÿ E0�x�jj2 dx
�1=2

�147�

for each e 2 �0; 1�: By accounting for Eq. (144), and considering the limit of Eq. (147), for e tending towards
0, we get

lim
e!0

Z
B

jjbT�Ee�x�; e� ÿ bT�E0�x�; e�jj2 dx � 0: �148�

Finally, by integrating the relation

jjTe�x� ÿ T0�x�jj26 �jjbT�Ee�x�; e� ÿ bT�E0�x�; e�jj � jjbT�E0�x�; e� ÿ bT�E0�x�; 0�jj�2; �149�
over B and considering Eqs. (105) and (148), we obtain Eq. (132).

We note that in order to obtain Eq. (132), no assumptions need be made on the uniqueness of the
displacement or strain ®elds corresponding to the masonry material. �

4. Conclusions

A class of non-linear hyperelastic materials M�e� dependent on parameter e has been introduced. For
e � 0;M�0� is a masonry-like material, and for e � 1, material M(1) is linear elastic. The main properties of
stress function bT�E; e� have been proved, in particular it has been shown that for � > 0; bT�E; e� is strongly
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monotone with respect to E. This allows proving that the solution to the equilibrium problem of solids
made of a material having constitutive equation T � bT�E; e� is unique in terms of displacement, strain and
stress; on the contrary for masonry-like materials, the solution is unique only in terms of stress.

Results given in Section 3, dealing with the behavior, for e going to 0 or 1, of the solution �ue;Ee;Te� to
the equilibrium problem of a solid made of a material M(e), are general. They do not depend on the
particular stress function bT�E; e� chosen, and hold for all functions bT�E; e� strongly monotone for e > 0
and monotone for e � 0:

Appendix A

Let us now consider the case k � 0: For

g1�E� � e2; �A:1�

g2�E� � e1; �A:2�
let us de®ne the hypersurfaces

I1 � fE 2 Sym j g1�E� � 0g; �A:3�

I2 � fE 2 Sym j g2�E� � 0g; �A:4�
and the open cones of Sym

R1 � E 2 Sym jg1�E�f < 0g; �A:5�
R2 � E 2 Sym j g2�E�f > 0g; �A:6�
R3 � E 2 Sym j g1�E�f > 0; g2 �E� < 0g: �A:7�

R1 and R2, coinciding with the cones of the negative de®nite and positive de®nite tensors, respectively, are
convex, while R3 is not. For e 2 �0; 1�, let us consider the following function bT�E; e�; dependent upon
E 2 Sym, with values in SymbT�E; e� � 2lE; E 2 R1; �A:8�

bT�E; e� � 2leE; E 2 R2; �A:9�

bT�E; e� � 2le1O1 � 2lee2O2; E 2 R3: �A:10�
The following results hold:

(i) For every e 2 �0; 1�; bT�E; e� is strongly monotone

�bT�E; e� ÿ bT�U; e�� � �EÿU�P 2lejjEÿUjj2 8 E;U 2 Sym: �A:11�
(ii) For every e 2 �0; 1�; bT�E; e� is Lipschitz continuous

jjbT�E; e� ÿ bT�U; e�jj6 2ljjEÿUjj 8 E;U 2 Sym: �A:12�
(iii) For every e 2 �0; 1�; bT�E; e� is monotone

�bT�E; e� ÿ bT�U; e�� � �EÿU�P 1

2l
jjbT�E; e� ÿ bT�U; e�jj2 8 E;U 2 Sym: �A:13�

The proof of (i)±(iii) is similar to that given, in Proposition 1 for k > 0 and is omitted here. As far as the
dependence of bT�E; e� on e is concerned, it is easy to verify that for each E 2 Sym

jjbT�E; e� ÿ bT�E; 1�jj6 2l�1ÿ e�jjEjj; �A:14�
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jjbT�E; e� ÿ bT�E; 0�jj6 2lejjEjj: �A:15�
bT�E; e� is di�erentiable in every region Ri. In fact, the derivative DE

bT�E; e� of bT�E; e� with respect to E is

for E 2 R1; DE
bT�E; e� � 2lI; �A:16�

for E 2 R2; DE
bT�E; e� � 2leI; �A:17�

for E 2 R3; DE
bT�E; e� � 2lO1 
O1 � 2leO2 
O2 � 2lee2 ÿ 2le1

e2 ÿ e1

O3 
O3: �A:18�

If e < 1; the derivative DE
bT�E; e� is not continuous with respect to E across interfaces I1 and I2, but the

jumps of DE
bT�E; e� in correspondence to I1 and I2, respectively, satisfy the conditions

�DE
bT�E; e�� � 2l�1ÿ e�O2 
O2 8 E 2 I1; �A:19�

�DE
bT�E; e�� � 2l�1ÿ e�O1 
O1 8 E 2 I2: �A:20�

For masonry materials, DE
bT�E; 0� is positive semi-de®nite in each region Ri and DE

bT�E; e� is positive
de®nite in Ri for e > 0; in fact, for every E belonging to Ri

DE
bT�E; e��H� �H P 2lejjHjj2 8 H 2 Sym: �A:21�
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